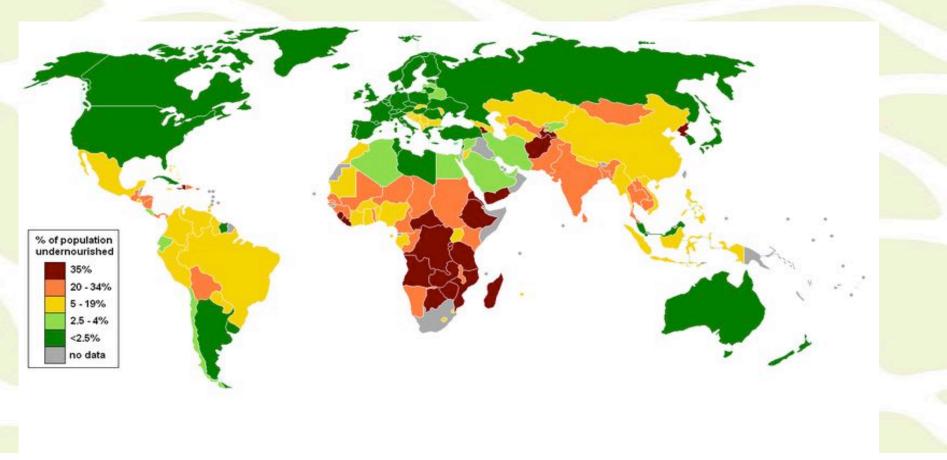
Post Harvest Loss reduction in developing countries

A contribution to food security

MSc. Michael Hesse Prof. Dr. Oliver Hensel

Status quo

• The seventh part (ca. 950 m) of humanity is suffering from hunger and malnourishment


Global PHL amount to one third (1.3 bn t annually)

 In developing countries 10% - 70% of harvested foodstuffs are lost

Percentage of undernourished people

Definitions

- Post Harvest Technology: technical procedure of work steps between harvest and consumption of agricultural products
- Post Harvest Losses: quantitative and qualitative losses of food and byproducts in the sector specified above
- Food Waste: Food items rejected by traders or thrown away by consumers

Objectives of PH-Technology

- Food security (supply of safe, non-hazardous food)
- Reduction of losses between harvest and consumption or processing
- Preservation of quality (appearance, texture, taste, nutritional value)

Spheres of action for PH-Technology

- Conditioning
- Preservation
- Transport
- Storage
- Processing

Fluent transition to food technology

PHL related Categories

- Bulk/weight loss → quantitative loss
- Downgrading → qualitative loss
- Edibility
- Nutrient providing ingredients
- Sensory characteristics
- Contamination (pathogenic, toxic)

PHL in developing countries

- Deficient harvest technology
- Antiquated processing
- Erroneous handling
- Inappropriate transport
- Improper storage
- Insufficient infrastructure
- Unsatisfactory marketing possibilities

Causes for Losses

Additional causes

- High-yielding varieties are more sensitive to pests
- Lack of capacities for big yield increase
- Changing cycles of crop growth
- Climate change (adverse weather conditions)

Extent of PHL

- Globally → about one third
- Industrialised countries → 5% -15% (except food waste)
- Developing countries → 10% -70% product depending (in extrem cases even more)
- Maximum losses with fruits, vegetables, milk and meat

Percentage of PHL for perishable commodities in developing countries

Roots & Tubers	potatoes	5 – 40	
	sweet potatoes	35 - 95	ST J POLIN
	yam	10 - 60	There are also also
	maniok	10 - 25	Derest 3. A
Vegetables	onions	16 - 35	Care March
	tomatoes	5 - 50	
	plantain	35 - 100	
	cabbage	37	
	cauliflower	49	
	salad	62	
Fruits	banana	20 - 80	
	pawpaw	40 - 100	
	avocado	43	
	peach, abricot	28	
	citrus fruits	23 - 33	No. of Concession, Name
	raisins	20 - 95	
	apples	14	
			14

Loss Assessment

An assessment is quite complicated, as losses:

- are driven by a multitude of influencing factors
- are fluctuating regionally and seasonally
- appear on different levels (local, regional)
- are strongly product-dependent
- There is no universally valid assessment methodology for all situations and products up to now
- Existing data are mostly based on rough estimates

Socio-economic Relevance

- The cost-effectiveness of investment for post harvest research is not inferior to that in the production sector (Goletti & Wolff 1999)
- Loss reduction is more sustainable than increased productivity
- Positive influence on the health situation
- The creation of employment opportunities reduces
 urban migration
- Generation of additional income by value-added products

Strategies of loss reduction

- "Classical" approach: isolated action for improvement in singular sectors of the post harvest chain, rarely sustainable
- Integrated approach: systemic, consideration of the entire value chain, identification of "hot spots" and analysis of options to intervene, preferably value-adding processing activities close to the production areas
- Additional option: inclusion of digital applications to enhance efficiency of interventions

Strategies of loss reduction

 Additional option: inclusion of digital applications to enhance efficiency of interventions

Your ideas?

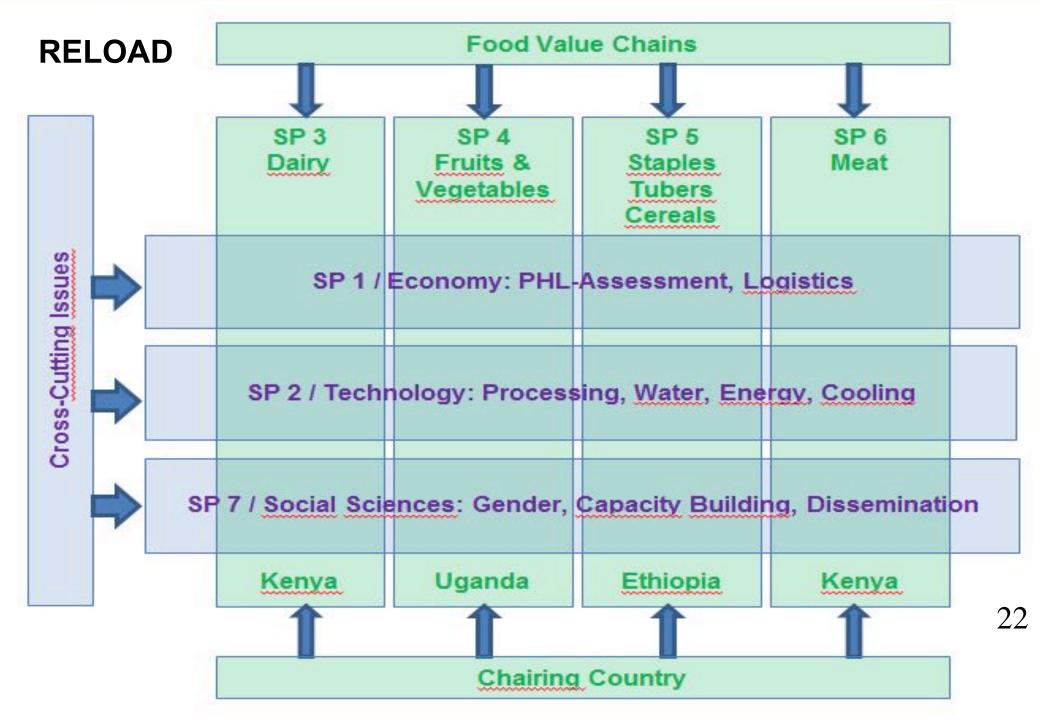
RELOAD - Project

- Reduction of Post Harvest Losses and Value Addition in East African Food Value Chains
- Development of a german-african network for system related research to reduce PHL
- 16 partner institutions from 4 countries 7 subprojects
- Promotion of small/medium processing enterprises for the value-addition of agricultural products

Cooperating partners

- 4 academic institutions from Germany
- 6 universities from Ethiopia, Kenya and Uganda, national agricultural research institutes and SMEs
- ICIPE: International Centre of Insect Physiology and Ecology, Nairobi

Structure


7 subprojects

• 4 related to the most important commodities in the respective countries

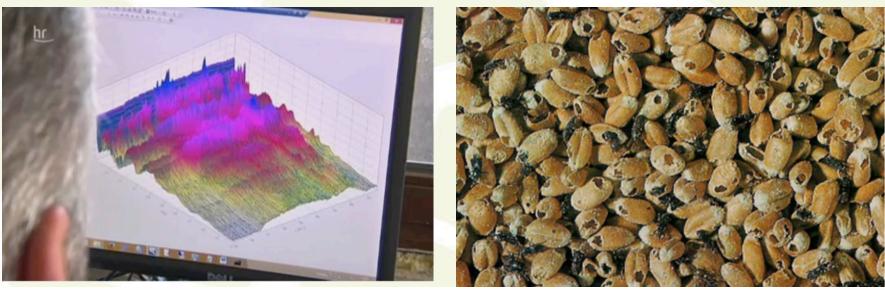
 3 product- and country-comprehensive (economic, technical and social aspects)

Innovative Research Approach

- Identification of potential problem spheres in a systemic context
- Analysis of the precise problem
- Prevention instead of reaction

Methods of computer-based prediction and prevention

- Acoustic pest detection in storage
- Storage with sensor based humidity control
- Sensor controlled solar drying
- Electronic bee hive health and swarm control



Acoustic pest detection in storage

Acoustic fingerprinting of postharvest insect pests at bulk storage of grains – early warning system by sound profile for identification of different species

Prof. Dr. Oliver Hensel Fachgebiet Agrartechnik ÖkologischeAgrarwissenschaften UNIKASSEL

Detection of insect pests

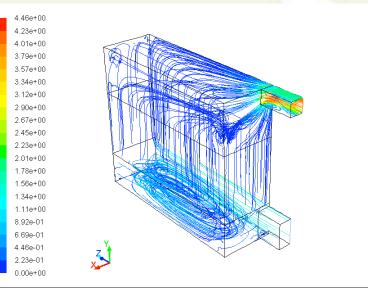
beetle and moth traps

Agricultural and Biosystems Engineering

Prof. Dr. Oliver Hensel Fachgebiet Agrartechnik

42

ÖkologischeAgrarwissenschaften UNIKASSEL


Ki the Kide Institu Acoustic detection of storage pests in silos WEDA We care about pigs MEODAT Processing,treatment/handli ng Silo controlling Agricultural and Biosystems Engineering **AGRARTECHNI** 41 Prof. Dr. Oliver Hensel Fachgebiet Agrartechnik

Ökologische Agrarwissenschaften UNIKASSEL

Sweet potatoe storage

Pathlines Colored by Velocity Magnitude (m/s)

Modify a traditional African mudhouse to a sophisticated in-bin storage for roots, tubers and cobs

Prof. Dr. Oliver Hensel Fachgebiet Agrartechnik ÖkologischeAgrarwissenschaften UNIKASSEL

Moisture meter:

White maize - 22a White maize-15d White maize -15a

Yellow maize wt-30

fellow maize wt-30a fellow maize wt - 226

fellow maize wt-22a

rellow maize wt-15o rellow maize wt-15o

fellow maize rt-30d

fellow maize rt-30a

Yellow maize rt -22 Yellow maize rt-22a Yellow maize rt-15d Yellow maize rt-15a

Maize, Popcorn

Barley with hulls Wheat - Hard Spelt / Dinkel - 1

Rice, parboiled Rye / Roggen

Barley - Bioland (h

Rice (Long grain bash

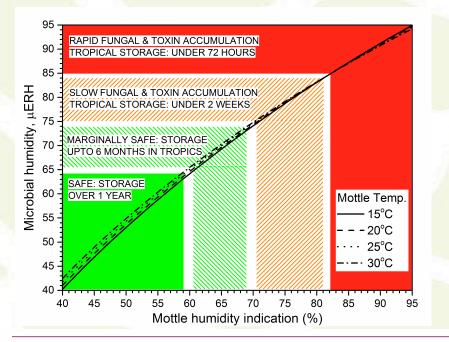
Millet /Hirse - kernels (c Oats / Hafer - with huli Oats / Hafer - bulled

Peanuts (large kern Peanuts (small kerr

Sesame seeds - un

unflower seeds - big unflower seed kernel

Sunflower seeds - sma

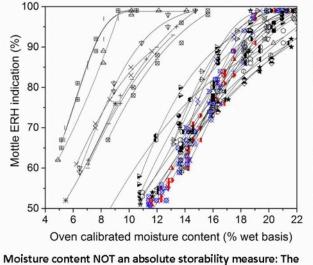

Rapeseed

Sesame seeds

Beans-spotted Cowpea Beans, Mung beans (Green grams

Sovbeans

Beans, Kidne Lentils (red)



RELOAD

REDUCING LOSSES

DDING VALUE

Mottle isotherms (motherms)

Moisture content NOT an absolute storability measure: The problem - its definition: Free water + bound water + volatilities

> Prof. Dr. Oliver Hensel Fachgebiet Agrartechnik

ÖkologischeAgrarwissenschaften UNIKASSEL

Conclusions

- The reduction of PHL is a substantial contribution to food security with strong socio-economic development potential
- There is a considerable shortcoming in the perception of post harvest deficiencies
- Innovative system-related research is necessary (considering the entire value chain)

Information / Contact

- <u>http://www.uni-kassel.de/agrar/agt/</u>
- <u>http://reload-globe.net/cms/</u>
- <u>hessem@uni-kassel.de</u>

Thanks for your attentiveness

